

デュアルチャンネルオシロスコープ

マルチメーター取扱説明書

CATALOG

ご利用上の注意 >>>>	2
1.はじめに >>>	2
2.同梱品の確認 >>>	2
3.各部の名称と機能 >>>	3
4.定格 >>>>	5
5.ボタンと機能 >>>	5
6.設定 >>>	18
7.アップグレード >>>	19
8.スタートアップロゴのカスタマイズ >>>	19
9.一般的な回路内の試験方法 >>>	20
<u>10.安全上のご注意 >>>></u>	27
11.製品情報 >>>>	28

ご利用上の注意

- この取扱説明書は、本製品について詳しく説明しています。本書をよくお読みになり、本製品を正しくお 使いください。
- 可燃性および爆発性の環境では使用しないでください。
- 使用済み電池および廃棄機器は、家庭ごみと一緒に廃棄することはできませんので、国または地方自治体の関連法規に従って廃棄してください。
- 製品の品質に問題がある場合、または製品の使用に関する質問がある場合は、"FNIRSI "オンラインカスタ マーサービスへお問い合わせください。

1. はじめに

FNIRSI-2C23T は、FNIRSI 社が開発したメンテナンス業界や開発業界向けに設計された、高機能で実用性の高 い3 in 1 デュアルチャンネルデジタルオシロスコープです。この装置は、オシロスコープ、マルチメーター、シ グナルジェネレーターの3 つの主要機能を備えています。オシロスコープは、FPGA + MCU + ADC ハードウェ ア アーキテクチャを採用し、サンプリング レートは 50MS/s、アナログ帯域幅は 10Mhz、高電圧保護モジュー ルを内蔵し、最大 ± 400V のピーク電圧の測定をサポートします。また、分析用に波形画面の保存および表示す ることもできます。マルチメーターは 4 桁の 10000 ポイントの真の実効値表示を備えており、交流/直流電圧と 電流の測定、静電容量、抵抗、ダイオード、オン/オフなどの測定機能をサポートします。専門家、工場、学校、 愛好家、家庭用などで、誰が使用しても多機能で理想な機器です。内蔵の DDS 機能信号発生器を搭載し、7 種 類の機能信号を出力できます。すべての信号の最大出力は 2MHz、ステップは 1Hz です。出力周波数、振幅、デ ューティサイクルは調整可能です。2.8 インチ、320×40 の高解像度 LCD ディスプレイ画面と内蔵の 3000mAh 充電式リチウム電池を搭載しており、待機時間は最大 6 時間です。優れた携帯性を備えながら、コンパクトなサ イズでより多くの実用的な機能をユーザーに提供します。

7. 同梱品の確認

お買い上げいただいた製品は次の品目で構成されています。使用する前にご確認ください。万一、足りない場合 や破損していた場合は、すぐに販売店または購入先までご連絡ください。

[プローブー式] プローブ ロッド……2 プローブチップ ……2 グランドリード ……2 マーカーリング ……8 ロケーションスリーブ ……2 調整ツール ………1

3. 各部の名称と機能

4. 定格

表示画面	2.8インチ 高解像度カラースクリーン
解像度	320×240
充電仕様	TYPE-C (5V/1A)
バッテリー	3000mAhリチウム電池
サポート機能	オシロスコープ、シグナルジェネレータ、マルチメータ (詳細は各項目の機能パラメーターをご覧ください)
待機時間	6時間(理論上の最大時間)
本体寸法	167 × 89 × 35mm
本体重量	300g

5. ボタンと機能

1.1 オシロスコープ - キー操作の説明

ボタン	操作	機能
Ċ	短押し	電源 オン/ オフ
MENU	短押し	ホームページ(機能選択画面)
CH1	短押し	CH1運用時:CH1の設定 CH2運用時:CH1へ切り替え
CH2	短押し	CH2運用時:CH2の設定 CH1運用時:CH2へ切り替え

ボタン	操作	機能
AUTO	短押し	自動
AUTO	長押し	ベースライン補正※
	短押し	計測停止
	長押し	50%センター
CAVE	短押し	画面保存
SAVE	長押し	保存画面の表示
	短押し	波形の移動
MOVE	長押し	オシロスコープへの切り替え
	短押し	トリガーの移動
CURSOR	長押し	シグナルジェネレーターへの切り替え
ø	短押し	トリガーの設定
TRIGGER	長押し	マルチメーターへの切り替え
<u> </u>	短押し	パラメーターの選択
PRM	長押し	測定パラメーターの表示 / 測定パラメーターの非表示

※ベースライン公正には時間がかかりますので、公正中は機器を操作せず、しばらくお待ちください。誤って機器を操作し、公正が中断された場合は、再度公正を行ってください。

(ベースライン公正にはプローブを取り外す必要があります)

1.2 オシロスコープ - インタフェースの説明

- ① 計測一時停止表示: Ⅱ▶ ボタンを押して波形を一時停止 し、波形取得ボタンをもう一度押して実行 します。
- ② 時間ベース: 50ns~10s、オシロスコープページの他のモードでは、左右の方向キーを押して時間ベース を調整します。
- ③ 現在の動作チャンネル表示: CH1 と CH2 の短押しで切り替わり、方向キーが移動チャネルの波形である ことを示します。
- ④ ファンクションジェネレーターインタフェース状態:状態は8つあります;オフ、正弦波 ≤ 、方形波
 、三角波 ≤ 、全波 ≤ 、半波 = 、ノイズ波 = 、直流 = です。
- ⑤ バッテリー表示:満充電時 、 残量が少ない時 を表示します。バッテリー残量が少なくなると、ポップアップ・ウィンドウにバッテリー残量が少なくなったことが表示され、カウントダウンが終わると自動的にシャットダウンします。
- ⑥ トリガーレベル:トリガー電圧の状態で、 このまを短く押し、トリガーカーソルを調整します。トリガー電圧の調整を示す ← が表示されます。この時に方向キーの上下ボタンを短押し、トリガーを調整します。

⑦ オシロスコープ・チャンネル1の設定:

動作チャンネルが 💷 の場合、**CH1**を短押しすると 💷 に切り替わります。 💷 使用中の場合、**CH1**を短押しする と、右画面で示すように、オシロスコープ チャネル 1 のス イッチ、倍率 (X1、X10)、およびカップリング (AC、DC) を設定するウィンドウがポップアップ表示されます。この 時点で、上下左右の方向キーを押して設定します。

 3 オシロスコープ・チャンネル2の設定:使用中のチャネル
 ご で操作する場合は、CH2を短押しして切り替えます。 チャネル ご で操作している場合は、CH2を短押しする と、右画面で示すように、オシロスコープチャネル2のス イッチ、倍率(X1、X10)、カップリング(AC、DC)を設定 するためのウィンドウがポップアップ表示されます。

9 トリガーの設定:トリガーモード、トリガーチャネル、ト リガータイプを設定するために使用します。TRIGGERキーを短 押しすると、右画面で示すように設定がポップアップ表示 されます。この時点で、上下左右の方向キーを押して設定 します。

- チャンネル1の波形: を操作する際、 を短く押して移動波形を設定すると、波形の移動を表す ◆
 インタフェースが表示され、方向キーの上下ボタンを使用してチャンネル1の波形を移動します。
- チャンネル2の波形: ^{CH2}を操作する際、^{MOVE}を短く押して移動波形を設定すると、波形の移動を表す
 インタフェースが表示され、方向キーの上下ボタンを使用してチャンネル2の波形を移動します。
- **2** 左右のカーソル:[№] を短く押すと、波形の動きを表す ◆ インタフェースが表示されます。左右の方向キーを使用してカーソルを移動します。

③ パラメーター計測の表示: ※ を短押しすると、右画面の ように測定するパラメーターがポップアップ表示され、設 定できます。 ※ を長押しすると、すべての測定は行われ ず、測定されたパラメーターはインタフェースに表示され ません。

1.3 オシロスコープ - 波形画面の保存

 波形画面の保存:SAVEを短押しすると、右画面のよう に
↓ Saving...のポップアップが表示されます。2 秒以内 に保存が正常に行われ、 Saved がポップアップ表示さ れます。この時点で波形インタフェースには BMP 形式の 画像が保存されており、画像名は「img_number」となり ます。この画像は、本体で閲覧・削除することも、TYPE-C にケーブルを挿入しパソコンに接続して閲覧すること もできます。

1.4 オシロスコープ – 機能パラメーター

チャンネル	デュアルチャンネル
サンプリングレート	50M
アナログ帯域幅	10M (デュアルチャンネル独立 10M)
ストレージ	32kb
インピーダンス	1ΜΩ
タイムベース範囲	50ns-10s
垂直方向感度	20mV/div-10V/div (X1)
最大測定電圧	±400V
トリガーモード	オート/ノーマル/シングル
トリガータイプ	立上りエッジ、立下りエッジ

表示モード	YT/Scroll
カップリング方式	AC/DC
波形画像の保存	対応
波形画像の書き出し	対応

2.1 ファンクション シグナル ジェネレーター - キー操作の説明

ボタン	操作	機能
Ċ	短押し	電源 オン/ オフ
MENU	短押し	ホームページ(機能選択画面)
	短押し	実行停止
	長押し	オシロスコープへの切り替え
CURSOR	長押し	シグナルジェネレーターへの切り替え
	長 押し	マルチメーターへの切り替え

2.2 ファンクション シグナル ジェネレーター - インタフェースの説明

- ② バッテリー表示:満充電時 、残量が少ない時 を表示します。バッテリー残量が少なくなると、ポップアップ・ウィンドウにバッテリー残量が少なくなったことが表示され、カウントダウンが終わると自動的にシャットダウンします。
- ③ 出力波形は7種類から選択可能:正弦波、矩形波、三角波、全波、半波、ノイズ波、直流から選択。
- ④ 波形図
- ⑤ 波形調整用パラメーター:調整できるパラメーターは、正弦波(周波数、デューティ・サイクル、振幅)、 方形波(周波数、デューティ・サイクル、振幅)、三角波(周波数、デューティ・サイクル、振幅)、全波 (周波数、振幅)、半波(周波数、振幅)、ノイズ波(周波数、振幅)、直流(振幅)です。

操作:最初に上下の方向キーを押して出力波形を選択し、次に右方向キーを押して波形設定パラメーター項目 に入ります。(上下左右の方向キーで調整を行い、Ⅱ▶を押して設定を完了します)

2.3 ファンクション シグナル ジェネレーター – 機能パラメーター

チャンネル	シングルチャンネル
周波数	1Hz-2MHz
振幅	0.1-3.3V

ボタン	操作	機能
Ċ	短押し	電源 オン/ オフ
MENU	短押し	ホームページ(機能選択画面)
AUTO	短押し	自動測定
	短押し	データ保持
SAVE	短押し	相対測定
	短押し	電圧/抵抗値
MOVE	長押し	オシロスコープへの切り替え
-+	短押し	ダイオード導通テスト/静電容量
CURSOR	長押し	シグナルジェネレーターへの切り替え

ボタン	操作	機能
¢	短押し	温度計測/ライブライン検出
TRIGGER	長押し	● マルチメーターへの切り替え
PRM	短押し	高電流/低電流
	6.	

3.2 デジタル マルチメーター - インタフェースの説明

- ① レンジのスケールバー
- ② ホールド:データの保持。有効にするには II を短押します。
- ③ REL:相対測定、静電容量レベルのみ有効。SAVEを短押しすると有効になります。
- ④ 測定值表示
- ⑤ 測定された特定のギア
- ⑥ ギア:マニュアル ギアを示すために使用される4つのボタンは、どのギアに切り替えるか(AUTOを短押 しするとオートマチック・ギアに戻る)を表します。

ボタンは左から順に次のように対応しています。MOVE CURSOR TRIGGER PRM

▶(—) MOVE	CURSOR		PRM
電圧/抵抗	ダイオード導通テスト/ 静電容量	温度計測/ ライブライン検出	高電流/低電流

⑦ 電源インジケータ

3.3 デジタル マルチメーター - プローブインターフェースの紹介

大電流測定:赤いテストペンは 10A に接続され、黒いテ ストペンは COM に接続され、AC 電流と DC 電流を自動 的に識別します。

低電流測定:赤いテストペンを mA に接続し、黒いテストペンを COM に接続すると、AC 電流と DC 電流が自動的に識別されます。

オートマチック・ギア:自動識別できるのは電圧と抵抗レベルのみで、電圧測定時は AC 電圧/DC 電圧を自動 識別します。 ダイオード導通テストギア:導通テストを測定する際、抵抗値が 50 Ω 未満の場合はブザーが鳴り、ダイオード 測定時に画面に正バイアス電圧が表示されます。テストワイヤーの極性がダイオードの極性と逆の場合、または ダイオードが損傷している場合は、画面に"OL"が表示されます。

LIVE(ライブ ワイヤー検知):赤いテストペンを +・小 に 接続し、TRIGGER を短押しして LIVE ギアに切り替ます。活線 に遭遇したら赤いテストペンを使用して電圧を検出しま す。画面には右のように表示されます。

tip. co. t.R.

機能	範囲	精度
直流電圧	9.999V/99.99V/999.9V	±(0.5%+3)
交流電圧	9.999v/99.99v/750.0v	±(1%+3)
直流電流	9999uA/99.99mA/999.9mA/9.999A	±(1.2%+3)
交流電流	9999uA/99.99mA/999.9mA/9.999A	±(1.5%+3)
低估	9.999ΜΩ/999.9KΩ/99.99KΩ/9.999KΩ/999.9Ω	±(0.5%+3)
18-17L	99.99ΜΩ	±(1.5%+3)
基金吻母	999.9uF/99.99uF/9.999uF/999.9nF/99.99nF/9.999nF	±(2.0%+5)
矿电台里	9.999mF/99.99mF	±(5.0%+20)
温度	(-55~1300°C)/(-67~2372°F)	±(2.5%+5)
ダイオード		
連続性		
	/	
(^{フィ} ノフィノ (検出	\checkmark	

設定項目:

言語	音量	オートパワーオフ	
画面の明るさ	スタートアップ	About	リセット

設定項目の詳細:

【対応言語】英語、ロシア語、ポルトガル語、ドイツ語、日本語

【音量】ボタン操作音

【オートパワーオフ】オフ、15分、30分、1時間

【画面の明るさ】1~100

【スタートアップ】オフ(機能選択画面)、オシロスコープ、シグナルジェネレーター、マルチメーター 起動時に自動的に起動する機能を設定します。

【About】 ブランド情報とバージョン番号

【リセット】設定値を初期値(工場出荷時)に戻します。

※最初に上下の方向キーを押して対応する設定を選択し、次に左右の方向キーを押して個々の設定のパラメー ターを選択します(上下の方向キーで設定を完了します)。

7. アップグレード

- 公式 Web サイトから最新のファームウェアを取得し、それを解凍(unzip)してデスクトップにダウンロード します。
- ② USB A から Type-C のデータ ケーブルを使用してデバイスをコンピューターに接続し、MENU ボタンを押し続けます。次に、 じボタンを押してファームウェア アップグレード モードに入ります。コンピューターに USB ドライブがポップアップ表示されます。
- ③ ファームウェアを USB ドライブにコピーします。コピーが完了すると、デバイスは自動的にファームウェ アのアップグレードを行います。
- ④ アップグレードのパーセンテージを確認します。アップグレードが完了すると、デバイスが再起動します。 アップグレードに失敗した場合は、公式カスタマーサービスにお問い合わせください。

8. スタートアップロゴのカスタマイズ

1. 置き換えたい起動インタフェース画像を用意し、【Photoshop ソフト等】にインポートします。

	具体的な画像の書き出	し手順
① 最初に起動インターフ ル名は[logo2c23.bm;	マェースの画像を用意してください。画像サ]にする必要があります。	⁺イズは320x240ピクセル、形式は[.bmp]、ファイ
② [メニュー] → [名前を	付けて保存] または [コピーして保存] を選	択します。
③ 詳細モードに入ります		
④ 【24ビット】【R5 G	▶ 6 B5】を選択し、反転列を確認します。次	に【OK】をクリックします。
New Ctrl+N	BMP Options	X BMP Advanced Modes
New Ctrl+N Open Ctrl+O Browse in Bridge Alt+Ctrl+O Open As Alt+Shift+Ctrl+O Open as Smart Object Open Recent	BMP Options File Fornat Vindows 05/2 Cancel	X BMP Advanced Modes
New Ctrl+N Open Ctrl+O Browse in Bridge Alt+Ctrl+O Open As Alt+Shift+Ctrl+O Open as Smart Object Open Recent Close Ctrl+W Close All Alt+Ctrl+W Close Others Alt+Ctrl+P	BMP Options File Fornat Vindows 05/2 Depth 1 Bit 4 Bit 6 Bit 1 B Fit	X BMP Advanced Modes 16 bit 11 E5 65 E5 A E5 65 E5 Cancel Cancel Cancel Cancel
New Ctrl+N Open Ctrl+O Browse in Bridge Alt+Ctrl+O Open As Alt+Shift+Ctrl+O Open as Smart Object Open Recent Close Ctrl+W Close All Alt+Ctrl+P Close Others Alt+Ctrl+P Close and Go to Bridge Shift+Ctrl+S Save Ctrl+S Save As Shift+Ctrl+S Save a Copy Alt+Ctrl+S	BMP Options Pile Fornat Viadows 05/2 Depth 1 Bit 4 Bit 8 Bit 16 Bit 24 Bit 22 Bit Compress (SLS)	X BMP Advanced Modes 16 bit 11 E5 65 E5 14 E4 64 E4 24 bit 28 68 E8 32 bit 13 E9 68 E8 32 bit 14 E4 66 E8 24 bit 24 bit 28 68 E8 32 bit 19 66 E8

- 2. デバイスの電源をオンにし、USB A から Type-C のデータ ケーブルを使用してコンピューターに接続しま す。
- 3. 準備したスタートアップ ロゴをデバイスの USB ドライブにドラッグします。
- 4. 操作が完了後、次回デバイスを起動したときにカスタム ロゴへ更新されます。

注意:ロゴを変更する前に、ファイル名、画像のピクセルサイズ、フォーマットなどをよくご確認ください。

9. 一般的な回路内の試験方法

1. バッテリーまたは直流電圧の測定

- 最初にオシロスコープを自動トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。これは、周期信号(直流電圧は周期信号に属します)をテストするために使用されます。
- ② オシロスコープを対応するギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ プローブを挿入し、プローブハンドルのスイッチを対応するギア位置に合わせます。
- ⑤ バッテリーに出力または直流電圧が出力されていることを確認してください。
- ⑥ プローブのクランプをバッテリーのマイナス端子または DC のマイナス端子に接続し、プローブをバッテ リーのプラス端子または DC のプラス端子に接続します。
- ⑦ AUTOボタンを1回押すと、直流電気信号が表示されます。バッテリー電圧やその他の直流電圧は直流信号に属し、カーブや波形を持たず、上下にオフセットのある直線のみで、この信号のピーク・ツー・ピーク VPP と周波数 F は共に0 であることに注意してください。

ギアの選択

水晶発振器は静電容量に遭遇すると、発振が停止しやすくなります。1倍プローブ の入力静電容量は100~300pFと高く、10倍ギアは10~30pF程度であるため、1 倍ギアでは発振が停止しやすくなります。そのため、10倍ギアに設定する必要が あります。つまり、プローブとオシロスコープの両方を10倍ギアに切り替える必 要があります。(プローブとオシロスコープの両方を10倍ギアに設定する必要が あります)

- 最初にオシロスコープを自動トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。これは、周期信号(水晶発振器の共振正弦信号は周期信号に属します)をテストするために使用されます。
- ② オシロスコープを10倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを AC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを 10 倍の位置に合わせます。
- ⑤ 水晶発振器ボードの電源がオンになっていて動作していることを確認します。
- ⑥ プローブのクランプを水晶発振器ボードのグランド線(電源のマイナス極)に接続し、プローブのキャップを抜き、針先を水晶発振器のピンの1つに接触させます。
- ⑦ AUTO ボタンを1回押すと、テストした水晶発振器の波形が表示されます。AUTO 調整後の波形が小さす ぎたり大きすぎたりする場合は、ズームモードで波形サイズを手動調整できます。
- 3. MOS トランジスタまたは IGBT の PWM 信号測定

ギアの選択

MOS チューブや IGBT を直接駆動するための PWM 信号電圧は、一般的に 10V ~ 20V の範囲内であり、PWM フロントエンド制御信号も一般的に 3 ~ 20V の範 囲内です。1倍ギアの最大テスト電圧は 80V であるため、PWM 信号のテストには 1倍ギアを使用すれば十分です。(プローブとオシロスコープの両方が 1倍ギアに設 定されています)

- 最初にオシロスコープを自動トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。これは、周期信号(PWMは周期信号に属します)をテストするために使用されます。
- ② オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを1倍の位置に合わせます。
- ⑤ この時点で PWM ボードに PWM 信号出力があることを確認します。
- ⑥ プローブ クランプを MOS チューブの S 極に接続し、プローブを MOS チューブの G 極に接続します。
- ⑦ AUTO ボタンを1回押すと、測定した PWM 波形が表示されます。AUTO 調整後の波形が小さすぎたり 大きすぎたりする場合は、ズームモードで波形サイズを手動調整できます。

4. シグナルジェネレーターの出力測定

ギアの選択

シグナルジェネレーターの出力電圧は30V以内で、1倍ギアの最大テスト電圧は 80Vです。したがって、信号発生器の出力をテストするには1倍ギアを使用すれば 十分です。(プローブとオシロスコープの両方が1倍ギアに設定されています)

- 最初にオシロスコープを自動トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。これは、周期信号(シグナルジェネレーターによって出力される信号は周期信号に属します) をテストするために使用されます。
- ② オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ プローブを挿入し、プローブハンドルのスイッチを1倍の位置に合わせます。
- ⑤ シグナルジェネレーターがオンになって動作し、信号を出力していることを確認します。
- ⑦ プローブ クランプをシグナルジェネレーターの出力ラインの黒いクランプに接続し、プローブをシグナルジェネレーターの赤い出力ラインに接続します。
- ⑦ AUTO ボタンを1回押すと、ジェネレーターが出力した波形が表示されます。AUTO 調整後の波形が小 さすぎたり大きすぎたりする場合は、ズームモードで波形サイズを手動調整できます。

ギアの選択

家庭用電気は一般的に180~260Vで、ピーク電圧は507~733Vです。国によって は家庭用電気は110Vで、ピーク電圧は310Vです。1倍ギアの最高測定値は80V、 10倍ギアの最高測定値は800Vです。(10倍ギアはピーク・トゥ・ピーク1600ま で耐耐えることができます)したがって、ギアは10倍に設定する必要があり、プ ローブとオシロスコープの両方を10倍ギアに切り替える必要があります。

- 最初にオシロスコープを自動トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。これは、周期的な信号をテストするために使用されます(家電製品の 50 Hz は周期的な信号と見なされます)。
- ② オシロスコープを10倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを 10 倍の位置に合わせます。
- ⑤ テストする端子に家庭用電気出力があることを確認します。
- ⑥ 家庭用電気製品は交流のため極性はありませんので、プローブクランプとプローブを家電製品の2本のワイヤーに接続します。
- ⑦ AUTOボタンを1回押すと、家庭用電気の波形が表示されます。AUTO調整後の波形が小さすぎたり大きすぎたりする場合は、ズームモードで波形サイズを手動調整できます。

6. 電力リップルの測定

ギアの選択

電源出力電圧が 80V 未満の場合は、1倍ギアに設定します (プローブとオシロス コープの両方が 1X ギアに設定されます)。80 ~ 800V の場合は、10X倍に設定し

ます (プローブとオシロスコープの両方が同じギアに設定されます)。

- 最初にオシロスコープを自動トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。これは、周期的な信号をテストするために使用されます。
- ② オシロスコープを対応するギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを AC カップリングモードに設定します。
- ④ プローブを挿入し、プローブハンドルのスイッチを対応するギア位置に合わせます。
- ⑤ 電源がオンになっていて、電圧出力があることを確認します。
- ⑥ プローブ クランプを電源出力のマイナス端子に接続し、プローブを電源出力のプラス端子に接続して、黄

色の線と黄色の矢印が待機期間の左端に表示されるまで約10秒間待機します。

- AUTO ボタンを1回押すと、電源リップルが表示されます。
- 7. インバーターの出力測定

ギアの選択

インバータの出力電圧は家庭用電気の電圧とほぼ同じで、通常は数百ポルト程度 なので、10倍ギアに設定する必要があります。(プローブとオシロスコープは両 方とも10倍ギアに設定します)

- 最初にオシロスコープを自動トリガーモード(起動後はデフォルトで自動トリガーモード)に設定し、周期信号をテストします。(インバーターから出力される信号は周期信号に属します)
- ② オシロスコープを10倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを 10 倍の位置に合わせます。
- ⑤ インバーターの電源がオンになっていて、電圧が出力されていることを確認します。
- ⑥ 極性を区別せずに、プローブクランプとプローブをインバーターの出力端に接続します。
- ⑦ AUTOボタンを1回押すと、インバーターが出力する波形が表示されます。AUTO調整後の波形が小さ すぎたり大きすぎたりする場合は、ズームモードで波形サイズを手動調整できます。
- 8. パワーアンプまたはオーディオ信号の測定

ギアの選択

パワーアンプの出力電圧は一般的に40V以下であり、1倍ギアの最大テスト電圧は 80Vであるため、1倍ギアを使用すれば十分です。(プローブとオシロスコープの 両方が1倍ギアに設定されています)

- 最初にオシロスコープを自動トリガーモードに設定します。(起動後はデフォルトで自動トリガーモードになります)
- ② オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを AC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを1倍の位置に合わせます。
- ⑤ アンプがオンになっていて動作しており、オーディオ信号を出力していることを確認します。
- ⑥ 極性を区別せずに、プローブ クランプとプローブをパワー アンプの 2 つの出力端子に接続します。
- ⑦ AUTO ボタンを1回押すと、パワーアンプが出力する波形が表示されます。AUTO 調整後の波形が小さす ぎたり大きすぎたりする場合は、ズームモードで波形サイズを手動調整できます。

ギアの選択

自動車で使用される通信信号は一般的に20V未満であり、1倍ギアの最高テスト電 圧は80Vです。したがって、自動車の通信信号のテストには1倍ギアを使用すれば 十分です。(プローブとオシロスコープの両方が1倍ギアに設定されています)

- 最初にオシロスコープを通常トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。通常トリガーモードは、非周期的なデジタル信号を測定するために使用されます。自動トリガーモードを使用すると、非周期的な信号をキャプチャすることができません。
- ② オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを AC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを 1 倍の位置に合わせます。
- ⑤ プローブクランプとプローブを通信ラインの2本の信号線に、極性に関係なく接続します。信号線が複数 ある場合は、事前に信号線を特定するか、2本を複数回選択してテストする必要があります。
- ⑥ このとき、通信回線上に通信信号があることを確認します。
- ⑦ 垂直方向の感度を 50mV ギアに調整します。
- ⑧ タイムベースを 20uS に設定します。
- ⑨ 通信回線上に通信信号がある場合、オシロスコープはそれをキャプチャして画面に表示します。キャプチャできない場合は、タイムベース(1mS~6nS)とトリガー電圧(赤い矢印)を調整しながら複数回試す必要があります。

10. 赤外線リモコン受信機の測定

ギアの選択

赤外線リモコン信号は通常3~5の範囲で、1倍ギアでの最大テスト電圧は80V です。したがって、赤外線リモコン受信機信号のテストには1倍ギアを使用すれ ば十分です。(プローブとオシロスコープの両方が1倍ギアに設定されています)

- 最初にオシロスコープを通常トリガーモードに設定します(起動後はデフォルトで自動トリガーモードになります)。通常トリガーモードは、非周期的なデジタル信号を測定する場合に特に使用されます。自動を使用する場合、トリガーモードは非周期的な信号をキャプチャできません。赤外線リモートコントロール信号は非周期的なデジタルコーディング信号に属します。
- ② オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ プローブを挿入し、プローブ ハンドルのスイッチを 1 倍の位置に合わせます。
- ⑤ プローブクランプを赤外線受信機ボードのグランド端子(マイナス極)に接続し、プローブを赤外線受信

機ヘッドのデータピンに接続します。

- ⑥ 垂直方向の感度を 1V ギアに設定します。
- ⑦ タイムベースを 20uS に設定します。
- ⑧ トリガーの赤い矢印の位置を、左側の黄色い矢印の位置より約1グリッド分上に調整します。
- ⑨ リモコンを使用して赤外線受信機に信号を送信すると、オシロスコープに波形が表示されます。
- 11. センサー付き増幅回路の測定 (温度、湿度、圧力、ホールなど)

ギアの選択

センサー信号は一般に数ミリボルト程度と比較的弱く、この小さな信号をオシ ロスコープで直接検出することはできません。このタイプのセンサーにはボー ド上に信号増幅器があり、増幅された信号を測定できます。1倍ギアを使用でき ます。(プローブとオシロスコープの両方が1倍ギアに設定されています)

- 最初にオシロスコープを自動トリガーモードに設定します。(起動後はデフォルトで自動トリガーモード になります)
- ② オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ③ オシロスコープを DC カップリングモードに設定します。
- ④ オシロスコープを1倍ギアに設定します。(起動後はデフォルトで1倍ギアになります)
- ⑤ プローブクランプをセンサーボードのグランド端子(電源のマイナス極)に接続し、増幅部の出力端子を 見つけて、この出力端子にプローブを接続します。
- ⑥ 垂直方向の感度を 50mV ギアに調整します。
- ⑦ キー移動モードに切り替えて、黄色の矢印を波形の下部まで水平に移動します。
- ⑧ タイムベースを 500mS に調整し、長い時間軸で低速スキャン モードに入ります。
- ⑨ 黄色の信号線が上部に現れる場合は、垂直方向の感度を下げる必要があります。垂直方向の感度は 100mV、200mV、500mVなどです。右側の更新された信号が上部にない場合(通常は中央)、この時点 で、センサーが受信した信号を検出することができます。

10. 安全上のご注意

- デュアルチャネルを同時に使用する場合は、2つのプローブのグランドクランプを互いに接続する必要があります。2つのプローブのグランドクランプを異なる電位、特に異なる電位の端子または220Vの大電力機器に接続することは厳禁です。そうしないと、2つのチャネルが一緒に接地されるため、オシロスコープのマザーボードが焼損します。また、すべてのオシロスコープの場合と同様に、異なる電位に接続するとマザーボード内部のグランド線に短絡(ショート)が発生します。
- オシロスコープの BNC 入力の最大許容電圧は 400V であり、1 倍プローブスイッチで 400V を超える電圧 を入力することは厳禁です。
- 充電する場合は別途充電ヘッドを使用する必要があります。現在テスト中の他のデバイスの電源や USB を使用することは厳禁です。そうしないと、マザーボードのグランド線が短絡(ショート)し、試験中に マザーボードが焼損する恐れがあります。
- 製品を使用する前に、シェルとインタフェース付近の絶縁が損傷していないか確認してください。
- ペンの保護装置の後ろに指を添えてください。
- テスト対象の回路を測定するときは、すべての入力ポートに触れないでください。
- ギア位置を変更する前に、テストプローブと回路の接続を外してください。
- 試験する直流電圧が 36V 以上、交流電圧が 25V 以上の場合、感電を避けるために使用者は予防措置を講 じる必要があります。
- バッテリー残量が少なくなりすぎると、ポップアップメッセージが表示されますので、測定性能に影響を 与えないように適時充電してください。

11. 製品情報

ご質問のある FNIRSI ユーザーの皆様には、弊社までご連絡いただければ、ご満足いただける解決策をご提供 することをお約束します。また、サポートへの感謝の気持ちとして、6ヶ月の追加保証もお付けします。 私たちは興味深いコミュニティを作成しました。コミュニティに参加するには、FNIRSI スタッフにご連絡くだ さい。

Shenzhen FNIRSI Technology Co., LTD.

- 住所: West of Building C,Weida Industrial Park,Dalang Street, Longhua District,Shenzhen,Guangdong
- E-mail: fnirsiofficial@gmail.com (営業部門) fnirsiofficialcs@gmail.com (サービス部門)
- 電話番号: 0755-28020752 / +8613536884686

http://www.fnirsi.cn/

F.P.